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The exact solutions for transition amplitudes are derived for stimulated emissions 
by external sources. More precisely, we obtain the exact expressions for transition 
amplitudes for the emission of art arbitrary number of particles by the sources 
when some particles are already present, in the process, prior to the "switching 
on" of the external sources. The solutions are given for an arbitrary number of 
particles with arbitrary configurations (of momenta, spin, etc.) and for particles 
of spin-0, spin-1/2, massive and massless (photons) spin-1 particles, and massless 
(gravitons) spin-2 particles. Applications are given as illustrations to the process 

~ anything, and, in quantum electrodynamics, to the process y -~ e§ - + any 
photons, in the presence of external sources, where a (virtual) photon decays 
into the pair e+e -. 

1. I N T R O D U C T I O N  

Almos t  al l  the s ta t is t ical  p rope r t i e s  o f  mul t ipa r t i c le  emiss ion  by  ex te rna l  
sources  (cf., M a n o u k i a n ,  1984, for  a recent  s tudy;  see also Paul ,  1982) m a y  
be  o b t a i n e d  f rom the k n o w n  expressions" ~ (of., Schwinger ,  1970, 1969) o f  the 
t rans i t ion  ampl i tudes ,  in  the  p resence  o f  the  sources ,  f rom the v a c u u m  to 
the  mul t ipa r t i c l e  state. The  la t te r  express ions  may  be  o b t a i n e d  f rom the 
v a c u u m - t o - v a c u u m  t rans i t ion  a m p l i t u d e  (0+I0_) fo l lowed  by  a sys temat ic  
use o f  uni tar i ty .  The t r ea tmen t  o f  the  p r o b l e m  for  s t imula ted  par t ic le  
emiss ion  by  the  sources  is, however ,  more  involved  bu t  is in the same spir i t  
and  a sys temat ic  s tudy o f  the  p r o b l e m  is cer ta in ly  lacking  in the  l i terature.  
By s t imula ted  par t ic le  emiss ion  one is referr ing to t rans i t ion  ampl i t udes  for  

p a r t i c l e  p r o d u c t i o n  by  the sources  when some par t ic les  are a l r eady  present ,  
in the  p rocess ,  prior to the "swi tch ing  o n "  o f  the  ex te rna l  sources.  
Express ions  are  k n o w n  to exist  in the l i te ra ture  (of., Schwinger ,  1970) on ly  
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for very special cases, such as for weak sources, but general expressions 
which cover all cases, such as for strong sources and with arbitrary number 
of particles of different configurations (of momenta, spin, etc.) in the initial 
and final states, are, to our knowledge, not  available. The purpose of this 
paper is to obtain such exact expressions. Our main results are summarized 
in equations (16), (26), and (54). The analysis is applied to particles of spin 
0, massive and massless (photons) spin-1 particles, massless (gravitons) 
spin-2 particles, and for particles of spin 1/2. Applications are carried out 
in Section 3 as illustrations to the process 4~ ~ anything, and, in quantum 
electrodynamics, to the process y ~ e+e -+  any photons, where a (virtual) 
photon decays into the pair e+e -. 

2. STIMULATED EMISSION 

2.1. Spin-0 Particles 

The vacuum-to-vacuum transition amplitude for charge-0, spin-0 parti- 
cles interacting with an external source K ( x )  is given by the well-known 
expression 

' I  " 
(O+lO_)K=exp~ (dx)(dx')K(x)A+(x-x')K(x')=--exP2KA+K (1) 

where 

f (ap)  e '~(x-x') 
A + ( x - x ' )  = (27r)4(p:+rn:_ie), e - ) + 0  (2) 

f d3p 1 A+(x-x')=i ~ dwpeq'(x-x'),x~176 dwp=(2~)32pO (3) 

pO= +(p2+ rn2)1/2. We also introduce the Fourier transform: 

K(p)= f (~dx) e-~"K(x) (4) 

For the subsequent analysis, it is convenient to introduce a discretiz- 
ation notation (Schwinger, 1969, 1970; Manoukian, 1984) for the momentum 
variable by setting in the process: 

Kp = ( dwp)'/2K (p) (S) 

The vacuum persistence probability may be then written as 

I(0+[0_) K [ 2 = e x p -  E [Kpl z (6) 
p 

Let {pl, P2, �9 �9 �9 } = S denote the set of  all possible momenta in a con- 
venient discrete-momentum notation, If nv,, np2,.., denote the number of 
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particles with momenta p~, p~ . . . .  , such that npt + npz+ . . . .  n denotes the 
total number of particles, then (Schwinger, 1970; Manoukian, 1984): 

(n; npl, np~,... Io-)" = <o+1o-> K (ir~,)",~ (/K~)",2 
(np,!),/2 (npfl)l/2 �9 �9 . (7) 

.)K = (o+lo_)K (iK*)"p, (iK*) %~ (8) (0+tn; % ,  n,,~, . . ( % , ! ) 1 / 2  ( n ~ 3 ) , / ~  " ' "  

To obtain the transition amplitudes for stimulated emission we proceed 
as follows. We write (Schwinger, 1970) K = K~ + K2+ K3, where the source 
/(2 is switched on after the source K~ is switched off, and the sou r ce  K3 is 
switched on after the source K2 is switched off. We may then write 

<0+10_) K = (0+10_>~(0+10_>'~<o+10_) K, e x p  iK* iK2 exp iK*3 iK, exp iK* ig~ 

(9 )  
where 

iK*a iK2 =- E ir*piK2p (10) 
P 

and Kp is defined in (5), (4). Upon expanding the last three exponentials 
on the right-hand side of (9), we obtain 

(0+10-) K = E (iK*p,)%, (iK3*p:)%2... (iK3*p,)'%, (iK3*p:)'%z 
�9 ** (np,!) 1/: (np2!) 1/2 (mp, t) 1/2 (mp~.) 

�9 r i p  . . . .  (iK2p,)",, (zK2p~) : (iK*p,)t,, 
• (npi~),/~ (,~),/~ (t~,~),/~ 

• (iK*p~)*~ �9 ' " (0+10)  K~(iKlpl)'n'' 
(Ip2!)1/2 - (mp,!)~/2 (mpfl) 1/2 "" 

• (iK~p) b~ (iKtp~) ~:. 
(/p,!)1/2 (lr:!),/2 "'" (0+10-) K' (11) 

where ~*** stands for a summation over all nonnegative integers np,, np~, 
. . . ,  rap,, rnp:, . . . ,  Ip,, lp : , . . . ,  such that 

%,+np:+  . . . .  n, m~+  rap2+ . . . .  m, lp~+Ip~+ . . . .  l (12) 

and over all m, n, l = 0 ,  1, 2 . . . . .  
We may also rewrite (0+[0_) K in terms of a unitarity sum (Schwinger, 

1970, Manoukian, 1984) as 

(O+lO-) K -- E (O+]N; Sp,, Np~,. . . )~ 

x ( N ;  Np,, Np2,...1M; Mp,, Mp~,...)r~iM; Mp,, M~, . . . t0_)  K' 

(13) 
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where Y.** stands for a summation over all nonnegative integers NpL , 
Np2, . . .  , Mpl , Mp2,... such that 

NpL+ Nm+ . . . .  N, Mp~+ Mp~+ . . . .  M (14) 

and over all N, M = 0 , 1 , 2 , . . . .  The amplitude (N;Np~,Np . . . . .  [M; 
Mp,, Mp~,...)r~ represents the transition amplitude for the creation of N 
particles, Np~ of which have momenta Pl, Np2 of which have momenta 
P2,.--,  when there are already M particles, M m of which have momenta 
Pl, Mp2 of which have momenta P2, . . . ,  prior to the switching on of the 
source K> This is exactly the object we are seeking and represents the 
stimulated emission of particles. 

Upon systematic use of the expressions for the amplitudes in equations 
(7), (8), setting 

np + rnp = Np,, mp + lp, = Mp, (15) 

i = 1 , 2 , . . . ,  and comparing equations (11) and (13) we arrive to the 
following expression: 

(N;  Np,, Np~,...[M; Mp,, Mp:, . . . )~ 
- �9 N r r  

= (Np,!Np2! . Mp,!Mp~[...)1/2 E* (,Kp,) . . . .  
" "  , ( N~, - m~L) ! 

• (iKp2) ~2-mp2 �9 �9 �9 (0+10-)g (iK*1)Mp'-r%1(iK*p2)MP2-r%2''" (16) 

( N p - m p ~ ) !  mp,!mp~! . . .  (Mpl-mo,)! (Mp~-mo)! 
for a general source K, and where Y,* stands for a summation over all 
nonnegative integers mpx , mp: , . . . ,  such that O<_mp<_min(Np,, Mp,), i =  
1, 2 , . . . ,  and where the equalities in equation (14) should be noted. The 
expression in (16) is exact. Applications of this formula will be given in 
Section 3. 

2.2. Massive Spin-1 Particles 

The vacuum-to-vacuum transition amplitude is given by (of. Schwinger, 
1969), in the presence of an external source J~(x): 

(0+10_)1=exp~f (dx)(dx')J'(x)(gz~-OmO2~)A+(x-x')J'(x') (17) 

+ P.P~ g,~ ---~-= ~ e,(p, A)e~(p, A)* (18) 
A = I  

p"e~(p,A)=O, A =1 , 2 ,3  (19) 

e"(p,A)*e.(p,A')=8~,,  A,A'= 1,2,3 (20)  
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where e~(p, A) is the polarization vector. Upon setting 

d3p 1 pO= (p2+ m2)U2 
Jpx = (dc%)l/2e~(p, h)*J"(p) ,  do~p (2r 2pO, 

(21) 
P 

J"(p)  = j (dx) e-iPXJ~(x) (22) 

we have in a convenient discrete-momentum notation: 

1(0+10_):]2 = exp( - ~ IJ,212~, A = 1,2,3 (23) 
\ p,h / 

Upon setting r= (p ,A) ,  r~{ r l= (p l ,  1), r2=(p1,2) ,  / '3=(pb3), r4= 
(P2, 1), . . .} one may also write, for example, directly from (7), (8) 

�9 n r �9 r 
( ' ;  ~'~rl , T~r2,. .  ~ J = [ 0  1~1_ ~J ( / J r l )  1 (I Jr2) r2 ( 2 4 )  

\ +Iv / (nq!)l/2(?/r2]) 1/2" ' .  

(O+[n; n,,, nr2,...)I = /0  I0 \.~(iJ*)"', ( iJ*)"'a. . .  (25) 
\ +1 -/ (nr,!)l/2 (tlr2!)l/2 

Finally from (16) we may then infer that 

(U;  Nq, Nr2, . . .[M; Mrs, Mr:. . . )y  
tiJ ' ]N~l-m., (iJr2) Nr2-mr2 

= (NrtN,:[. �9 �9 M,,tMr2t. �9 .)~/2 S'* ' "~: 

(~176  I (iJ*~,) ~''-"''  ('!,~) * ~ "~-''~ 
x . . . . . .  (26) 

mr,!mrz!''" (M,-rn , , ) t  (M,2-rn,~)! 

where Y~* stands for a summation over all nonnegative integers mr,, i = 
1, 2 , . . . ,  such that 0 <- rn,, <- min(N,,, Mr,). Also note that Nr, + N,2+ . . . .  N, 
Mr, + Mrs+ . . . .  M, and Jr ------- Jpx2, with Jpx defined in (21). 

2.3.  P h o t o n s  

The vacuum-to-vacuum transition amplitude, in the presence of a 
conserved external current J r (x) :  O,J~'(x) = O, p~'J,(p) = 0, is given by (cf., 
Schwinger, 1970): 'I (0+10_)1 = exp ~ (dx)(dx')J"(x)D+(x-x')J~,(x ')  (27) 

f ( d p )  e 'p(~-~') 
D.~(x - x') = (2r p 2 _  ie ' e ~ +0 (28) 

2 
g~" =P~ff"+ff~P" ~- E e~(P, Z)e~(P, A)* (29) 

( p : )  ~=, 
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p,~= (pO p), p~_. (pO _p), where e~(p, A) is the polarization vector, A = 
1, 2. Upon setting 

Jpx = (dogp) 1/2 e ~ ( p ,  A ) * J ~ ( p ) ,  

We may write 

dSp 1 
drop- (2~) 3 2[p[ (30) 

A = 1 , 2  (31) 

Equations (24), (25), and (26) also hold true with now h = 1, 2, m ~- 0. 

2.4. Massless Spin-2 Particles: Gravitons 

The vacuum-to-vacuum transition amplitude, in the presence of a 
symmetric T~(x)=T,..(x) and conserved O~T"~(x)=O, p.T"~(p)=O, 
p~T"~(-p) = 0, external source T~(x) is given by (cf., Schwinger, 1970): 

(O+D_) r = exp ~ (dx)(dx') r"~(x)[g,~.g~ -~g.~g.~]D+(x - x') r"~(x ') 
(32) 

We set 

d3p 1 
Tpx=(dtop)l/2e~,,(p,.~)T~"(p), dr% (2~)3 21p 1 (33) 

where e.,,(p, A), A = 1, 2 are (real) polarization tensors. We may effectively 
replace [g.xg~-�89 as 

2 
1 ..~ [g~g,~--~g.~,g~,,~] ~ e.,~(p, )t )e;,,.(p, A')* (34) 

h'=t 

One then obtains 

[(0+t0_)[2= e x p ( -  ~ ITp~[2), h = 1,2 (35) 
p,X 

and equations (24), (25), and (26) are true with Jr formally replaced by T~, 
r = ( p , h ) ,  where now h =1 ,2 ,  rn--0. 

2.4. Spin-l/2 Particles 

The vacuum-to-vacuum transition amplitude, in the presence of 
external (anticommuting) sources r/(x), ~(x),  may be written as 

(0+[0_)" = exp i J (dx)(dx')~l(x)S+(x -x')*l(x') (36) 

f (dp)  e--) +0 (37) 
eip(x-x')(-yp+ m) 

S + ( X  --  X') = (27r)4 p 2  + m 2 _ ie ' 
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(3,0) *= 3, ~ (yk)*=--yk.  It is readily checked that  r  is 
real. Using the eigenfunct ion expansion 

( - y p +  m) 
Y u(p, o-)c,(p, o9 (38) 

2m o- 

we may write "71(p)(--yp + m ) r l ( p )  = Y~,~ 2 m ~ l ( p ) u ( p ,  ~r)a(p, tr)T/(p), and 
the latter is positive. Hence  we have 

We also note  in a s tandard notation:  

( y p +  m) 
E v(p,  cr)~3(p, o') = (40) 
,~ 2m 

Z [u(p ,  o')ft(p, t r ) -  v (p ,  tr )~(p,  or)] = 1 (41) 
tr 

tT(p, t r )u(p,  or') = 8r162 (42) 

~(p, o')v(p,  o" )=  -8 ,~ ,  (43) 

We set 

(2m dtop) l /2 f l (p)u(p  , ~) = r/p*,~_ (44) 

(2m dt%)l /2a(p,  o-)r/(p) = %~_ (45) 

(2m dtop)I/2~(p, t r ) , / ( - p )  = r/*,~+ (46) 

(2m d t % ) a / z ~ ( - p ) v ( p ,  or) = ~/p~+ (47) 

where the signature - corresponds to a particle, and + to the anti-particle. 
We int roduce the convenient  nota t ion r~- (O, o-, e), tr--- 1, 2, e = +. 

We then have 

( r / ,  r/r~ , r / r 2 , . . . 1 0 _ )  v (i71"1)'% (i~1r2)'% "" (0+10_)" (48) 
= (nrt)V2 (nr2!) 1/2" 

(0+In; nrl, n ,2 , . . . )"  = (0+[0_) n . . -  (ir/'2)"'2 (i~r*)% (49) 
(%!),/2 (nr~!)~/2 

where one should note the opposi te  ordering (Schwinger,  1970) in (48) and 
(49), which is a consequence  of  the ant icommuting nature of  the external  
sources. We note  that nr, = 0 or 1 because (,/r)2 = 0, and hence nrt = 1 always. 

From equat ions (48), (49) one should note that 

( i , l , j ) ( n -  1; nr~, . . . ,  ng_ ~, O, n%~,. ..10_) n 

= ( - 1 ) ~ , + " + % - , ( n ;  n~ , , . . . ,  n~j_~, 1,~, n,j . . . . . .  10_)" (50) 

(O+]n-  1; n . . . . . .  , n,j_~, O, n,~+,, . . .)n(irl~) 

= (-1)"' ,+"+%-~(O+ln; n r , , . . .  , nrj_l , l r j  , l ' l r j + l , . . . ) ~  ( 51 )  
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To obta in  the transi t ion ampl i tudes  for  s t imulated emissions we write 
*/= */1 + */2+ */3, where  */2 is switched on af ter  */1 is switched off, and */3 is 
switched on after  */2 is switched off. U p o n  using the expans ion  p roper ty  
(nr, = 0  or 1), 

exp ~] i*/*~i*/2~ 
r 

-~E ~'  (i*/*3rl)nq(i*/*3r2)nr2"''(i*/2r2)n'E(i*/2r,) n'l 
tl n r l - F n r 2 + . . . ~ n  

= E  ~' (i*/2r~) n''(i~-̀  .zra:)n' . . . .  (i*/*3,2)n,2(i*/*3r~)n,, (52) 
n nr ,q-nr2  + . . . .  n 

we obtain,  as in Eq. (11), the expression 

�9 * n 2 " * nr " n �9 n ( O + l O - - )  r/ = Z " " " ( 1 . / 3 r 2 )  r ( l * / 3 r , )  ' ( I T ~ 2 , , )  r l ( l * / 2 r 2 )  r 2 ' ' "  ( 0 + 1 0 - - )  "q3 
(***) 

• (i*/*r,)mr,(i*/*3r~)'% "'" (i*/2r2)%(i*/2~,)",,(0+10_) ~ 

•  "(i*/*~:)~(i*/*~,)~"l(i*/ar,)t~,(i*/l~:)~ . . .  (0+10_) ~1 (53) 

where  one should  be careful  with the ordering,  and Y~r stands for  a 
summat ion  over  n~: mr,, Ir~ = 0, 1; i = 1, 2 , . . . ,  such that  n~, + n~+  . . . .  n, 
rnr,+ rn~+ . . . .  rn, lr,+ l~: + . . . .  I and n, 1, r n = 0 ,  1 , 2 , . . . .  

By a systematic  use of  equat ions (48)-(51),  we obtain  f rom (53) by 
using a unitari ty expans ion  as in equat ion (13) the exact  expression:  

(N;  N,,, Nr2,. . .  IM; Mr,, M,~,. . . )~ 
= E* (--1)m~'(N+M)(--1)m~2(N+M+NI+Mq)(-1) mr3(N+M+Nrl+Nr2+Mrl+Mr2> 

x . . .  (i*/,,) Ur,-m',(i*/,~)U~:% �9 �9 �9 (0+10_) ~ 

. . . ( i * / * ) ~ - " 1  �9 , M - m  "2 r 2 ( l n r , )  rl r '  (54) 

where  Y* stands for  a summat ion  over  rnr,=O, 1 such that O<_rn~,<_ 
min[Nr,, Mr,], i = 1, 2 , . . . .  The  presence  of  the phase  factors in the s u m m a n d  
in equat ion  (54) should be noted.  

3. E X A M P L E S  

Before consider ing appl ica t ions  to s t imulated emission by  the external  
sources,  we quickly point  out  some of  the details o f  the very general  me thod  
developed  earlier (Manouk ian ,  1984) in de termining transit ion probabilities 
for  mult ipart icle  p roduc t ion  by external sources. 

Cons ider  the t ransi t ion ampl i tude  in (7) in the presence  of  the real 
scalar source K(x ) .  The transi t ion probabi l i ty  is then 

I(n; np: np2,. . .  10_)Icl 2 = I(0+[0_)r[ 2(IKpf)%~ (IKP~12)%2 �9 �9 �9 (55) 
np,! np2 ! 
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where 1(0+10_)[ 2 is given in (6). Let A l = { Q ~ , Q 1 2 , . . .  } . . . .  ,Ak = 
{Qkl, Qk2,--.  } be some given disjoint subsets of the set of all momenta 
S --- {p~, P2, �9 �9 .}. Let nq,j denote the number of particles with momenta Qo- 
Let na, denote the number of particles with momenta in the set A~. Then 
we may use the following identity: 

52 (IKQ"I2)~~ (IKQJ2)"~ �9 �9 �9 

tlOllq-~lQl2-}- . . . .  /l~1 n Q l  I ! n Q t  2 ! 

[,KQI112+,KQ1212+...]nal ( ~ Q ~ A I ' K Q ' 2 )  hal 

na~ ! na~ ! 

2 n~l 

Hence from (55), with n = nA~ +.  �9 �9 + n,,~, the transition probability that the 
source K emits n particles, na, of them having momenta in A~, na2 of them 
having momenta in A 2 , . . .  , is given by 

. ~ , 

nal! n~ k ! 
oxp( f oo 

(57) 

We now consider some stimulated emission processes. We study the 
process ~b ~ any ~b, in the presence of the external source K, where ~b 
represents a charge-0, spin-0 particle. Suppose the initial momentum of ~b 
is Pl- In equation (16), this corresponds to M =  1, M p = l ,  M p ~ = 0 , . . . .  
Since 0 < - mp, --- min[Np,, Mr,], this also means that mp~ = 0, rap3 = 0 , . . . ,  and 
0 -  < mp~-< min[Npl, 1]. That is 

( N ;  lV,~, N , ~ , . . . 1 1 , / '  = 

if Np~ = 0, and for Npl --- 1, 

(iKp~) ~'2 (iKp3)~3"'" (0+[0_)riK*l (58) 
(m,2!)  '/2 (N,3!)  ~n 

(N ,  Np,, Np2,.. .]lp)K = (Np~!Np~!...)~/2 

• ~(iKp, )N'' ( iKp2)N"2. . .  (O+[O_)KiK~, 
t N,~ N,3 
(iKp~) NP~ -~ (iKp~)N,~ } 

+ ( N p l _ l ) !  N p 2 !  " ' ' (0+10-)  • (59) 

Clearly, the second term in the curly brackets in equation (59) corresponds 
to a disconnected process where the initial particle just passes through the 
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process undetected by the source. Hence in all cases, we may write for the 
connected process, where the initial particle is detected by the source before 
multiparticle production occurs is given by 

(N; Np,, Np2, . . . [ lpl )y-  (iKp')N"' (iKp2)N'P: K �9 , 

- (Np,!)i/2 (Np2[ )1 /2" ' "  (0+10_) (ZKpl) (60) 

As an interesting application suppose that the net energy-momentum release 
is Q, then we may write for the transition probability for the process ~b ~ any 
~b, with masses m = 0: 

(2r 4 ~ Z (]K"!2)~' ([KP=[2)N~""" I(o+lo-)Kl=lK~,l = 
N=o N,,+N~+ .... N Np,! Np2! 

• 8(Np, p, + Np~p2+ . . . .  P, - O) (61) 

where Pi = ([Pi[, Pi). The 8 function may be more conveniently written as 

8(Nptpl + Np~p2 + . . . .  Pl - Q) 

'4 I =(-~)4 (dz) exp i[N~,pl+Np~p2+ . . . .  p l - Q ] z  (62) 

Hence upon using the identity in (56), we may rewrite (61) as 

f ( d z )  N=0 ~ []KP'[2 e~P'~+IKP~I2N' e~'~z+''']nlKpll2 e x p ( - ~ l K p ,  2) 

x e x p [ - i ( p l +  Q)z] (63) 

Therefore, if the tip of the initial particle momentum Pl ~ P lies in the range 
d3p, we have from (63) 

d3P [K(P)12 f (dz) e-'(P+O)~ exp[ - I (2zr)32po[K(p)[2(ld3p -- e~P~) ] (64) 
(2~r) 3 2p ~ 

where we have used the fact that 

�9 . f d~32pOIK (P)I 2 [[Kp, I 2 e'V,~ +lKp2l 2 e'~2z + . . .3 =Y~ Igpl 2 e 'p~-~ e ~p~ (65) 
p (2 

and the relation in equation (6). 
We now consider a more involved application dealing with quantum 

electrodynamics in the presence of  an external current J~'(x). We study the 
process 3,-> e + e -+any  photons, to lowest order in the charge, where a 
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(virtual) photon decays into the pair e+e -. To this end the vacuum-to- 
vacuum transition amplitude may be effectively written as 

f (dx)(dx')J'(x)D~x_x,)J,(x ') (66) 
i 

(0+[0_)Y,e = exp 
J 

where 

D(+2)(x - x') = j ~ ~  Jo d~ e ~ +0 (67) 
(p2-F 0 . 2 -  ie)' 

and we retain only the lowest contribution p(2)(o-2), in e, to the spectral 
function. Also note that any multicurrent contribution in the exponential 
in (0+10_) ze necessarily involve terms of higher orders in e. 

Upon setting effectively, 

d3p 1 
dt%~ - (2~.)3 2(p2 + 0.2)1/2 (68) 

We may infer from equations (26), (64), and (66), that the transition 
probability P for the process is given by 

\ 0 a  /~=o 

where ~ = e2/4~r, and effectively, 

_ d 2 P f e-i(p+Q)z 

(2~-)321p[ 

x e x p [ ;  dap - ~ f o  d0.2p(2~() :)2J~(p)*J~(p) 
2(p 2 + 

x exp{i[p �9 z -  (p2q_ O.2)1/22o]} ] (70) 

Using the well-known fact that 

~_~p(0.2) I _Oap(2)(o.2)l,~= ~ 1 [ 2m2\[ _4rn2"~ 1/2 

o = o  

0.2>--4m2, where m is the mass of the electron (positron), and if it has 
momentum p~ (P2), then 0.2 = _ (p~ +p2)2 _- 2m 2_ 2(p1 �9 P2-P~176 >- 4m 2- It 
is worth noting that (p~ + p2) 2 + 0.2 = (pO + pO)2. 
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All told the transition probability P for the process may be written 

(2~')~]P[ [e~(p'A)*J~(p)[2 f (dz)e -i(p+O)z 

• (2~lp.l[J"(p')*J.(p')][1-e'(P .... ,p.,~o)]} 
I daq f4 ~ d0-2 1 [ 2mZ\(a_4m2~1/2 

x ~ 2 ~ 2(qZ+o-2)u2[ l+- -~ ' - ) \  0-z ] 

x [J~(q)*Jf,(q)] exp i[q.  z -  (q2+ 0r2)l/2z0] (72) 

where the initial photon has a polarization A, and a momentum p with tip 
in the range dap. The momenta and the polarization of  the final products 
are not measured. We note that in the last integral qO= (q2+ o.2)1/2. 

Other applications are similarly carried out. 
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